If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+64-196=0
We add all the numbers together, and all the variables
x^2-132=0
a = 1; b = 0; c = -132;
Δ = b2-4ac
Δ = 02-4·1·(-132)
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{33}}{2*1}=\frac{0-4\sqrt{33}}{2} =-\frac{4\sqrt{33}}{2} =-2\sqrt{33} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{33}}{2*1}=\frac{0+4\sqrt{33}}{2} =\frac{4\sqrt{33}}{2} =2\sqrt{33} $
| -14t+20t-19t+12t=-10 | | 77=(5x-6)+(5x+3) | | C=2*3.148r | | 6-12m=0 | | -2t-5t+9t=-6 | | -7a-2a=-6-7a | | 45x+100=347.50, | | 6x−18=0 | | 4x-x+2=2x+5 | | 6x−18=06x−18=0 | | 5(x)=10x−5 | | X/2y=0 | | 5x+3(x+15)=0 | | 6w+4w+4w-10w-3w=20 | | 2/16=4/x | | 5x-3=2x+1+2x+1 | | −5x+1−9x+9=1−5x+1−9x+9=1 | | 5x−2−−−−−√=105x−2=10 | | (3x+3)=(6x-7) | | 5x1=x+7 | | -6y=5+5y-6 | | (5x-10)=60 | | (x×x)/2-8=28 | | j/5=-12 | | (X+17)+(4x-5)+63=180 | | 6m+2=-3m-16 | | 8b+9-2=5b+22 | | 20+x=25+x | | 35t+70(7-+)=385 | | (3x-58)=x | | x3-6x-40=0 | | X+17+4x-5+63=180 |